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A spectral element method is described which enables Stokes flow in contraction geometries 
and unbounded domains to be solved as a set of coupled problems over semi-infinite 
rectangular subregions. Expansions in terms of the eigenfunctions of singular Sturn-Liouville 
problems are used to compute solutions to the governing biharmonic equation for the stream 
function. The coefficients in these expansions are determined by collocating the differential 
equation and boundary conditions and imposing C’ continuity across the subregion interface. 
The suitability of domain truncation and algebraic mapping techniques are compared as well 
as the choice of trial functions. ci? 1989 Academic Press, Inc 

1. INTRODUCTION 

In this paper we investigate techniques for numerically solving Stokes flow in a 
contraction, i.e., an infinite channel whose diameter changes abruptly. The numerical 
solution of such problems in unbounded domains involves two approximations. 
First, the solution must be approximated by some representation. The unknowns in 
such a representation are determined by satisfying the differential equation and 
boundary conditions, in some sense. Second, the unbounded domain may be 
approximated by a finite domain. We are particularly interested in the effect upon 
the solution of the treatment of the unbounded domain. 

In the study of non-Newtonian fluids through tortuous geometries it is well 
known that the behaviour of the flow is dependent on the entry and exit lengths 
[4]. The entry length needs to be increased as the elasticity parameter, or Weissen- 
berg number, increases so that a fully developed velocity profile can be imposed in 
the entry and exit sections. When such problems are solved numerically this places 
a limitation on the value of the Weissenberg number for which computations are 
practicable. The need to overcome this restriction provides the motivation for the 
current study, i.e., our ultimate aim is to solve the equations governing the flow 
of a non-Newtonian fluid with no limitation on the Weissenberg number using 
techniques developed in this paper for treating unbounded domains. 

Grosch and Orszag [lo] studied the problem of solving ordinary differential 
equations in unbounded regions using Chebyshev polynomials. Since the 
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Chebyshev polynomials are defined on a finite interval they proposed two proce- 
dures to overcome this dilliculty. The most obvious one, known as domain trunca- 
tion, imposes an artificial boundary condition at a large but finite distance. The 
problem is then solved in the finite region. The second procedure solves the 
problem in a transformed region. This is achieved by mapping the semi-infinite 
region 0 <x < cc, for example, onto the finite region 0 dz d 1 using either an 
algebraic mapping of the form 

X 
z = - 

x+L 

or an exponential mapping of the form 

z= 1 -e-.rlL 

where the parameter L is known as the mapping factor. The outcome of their work 
was that if the exact solution to the differential equation decayed exponentially fast 
as 1x1 + co, then all the methods would work but the use of the algebraic mapping 
produced the best results. However, if the solution oscillates at infinity then the 
mappings fail. 

Using the method of steepest descents, Boyd [l] compared the effectiveness of 
these methods for solving problems in a semi-infinite or infinite domain using 
Chebyshev polynomials. Boyd used these methods to obtain approximations to 
known functions and not to find solutions to differential equations. He also gives 
estimates of the optimum choice of domain size or mapping factor. 

The study of the numerical simulation of non-Newtonian fluids has generated 
much interest in recent years. At the present time finite element methods enjoy a 
high level of popularity and success in the field due mainly to their flexibility which 
facilitates the numerical solution of problems defined in general, irregular regions. 
One of the remaining problems of major importance in the simulation of such flows 
is the so-called high Weissenberg number problem. This concerns the breakdown of 
convergence of a method or degradation of numerical solutions as the Weissenberg 
number is increased. Marchal and Crochet [16] have shown that in a mixed finite 
element formulation this problem can be avoided for larger values of the Weissen- 
berg number if higher order (Hermitian) trial functions are used. We plan to take 
this idea a step further by considering spectral methods which, by definition, use 
high order global trial functions. 

The governing equations in non-Newtonian fluid mechanics consist of field 
equations and constitutive equations. The field equations comprise the equation 
of continuity, the conservation of momentum, and the local expression of the 
principle of balance of angular momentum. For the plane, inertialess flow of an 
incompressible fluid these statements assume the mathematical form 

v.v=o, 

V.P=O, 

(1.1) 

(1.2) 

581/80/Z-5 
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where v denotes the velocity field and P the Cauchy stress tensor. The principle of 
balance of angular momentum in the absence of body and surface couples requires 
that the Cauchy stress tensor P be symmetric. 

The constitutive equation for a corotational Maxwell model is given by 

T+Xf=2qD, (1.3) 

where D is the rate of deformation tensor, T the extra-stress tensor, and 1 and q 
are material constants. For an incompressible fluid, the motion of the continuum 
determines the stress tensor up to an arbitrary isotropic tensor and thus P and T 
are related as 

P= -pI+T, (1.4) 

where p is an arbitrary pressure and I the identity tensor. The corotational 
derivative ? is an average of the upper and lower convected derivatives. 

The introduction of a stream function I,+, defined by 

w a* 
u=@ v= -ax’ 

means that Eq. (1.1) is automatically satisfied. Further, the stress field P may be 
represented in terms of an Airy stress function x (scalar) as 

p =dZX 

I1 w 

p =d2X 22 ax2’ 
p,,= -dZX 

ax ay’ 

This representation ensures the satisfaction of Eq. (1.2). The only differential equa- 
tion that is not already satisfied is therefore the constitutive equation (1.3). This 
equation may be written in terms of the scalar functions $, x, and p yielding three 
scalar differential equations in terms of these variables. Coleman [2, 31 eliminates 
the pressure and, by defining a complex potential 4 to be x + 2iq@, shows that the 
governing equation for the creeping flow of a corotational Maxwell fluid may be 
written in the form 

aIm4 a aIm4 a 
a2 a2 aZ a.2 

2d21md d2Redz0 ------ - 
aZ az 1 -@-’ (1.7) 

This equation may be written in terms of the real variables $ and x and 
manipulated to obtain the coupled system 

v4tj = wA(az*, a3*, a”$, azx, a3x, adz), (1.8a) 

(1 + WV. v) v4~ = ws(a’$, a’$, a”+, a2X, axx, ahx), (1.8b) 

where A and B are bilinear forms in their arguments, and a denotes partial differen- 
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tiation with respect to x or y. The Weissenberg number, W, is an elasticity 
parameter and is a measure of the fluid’s memory. 

The success of spectral methods in solving the primary problem, which is a 
one-dimensional model of ( 1.8b), has already been demonstrated [6, 131. Plane 
creeping Newtonian flow may be described using a stream function that satisfies a 
biharmonic equation. This type of flow is also known as Stokes flow. If we are to 
have a realistic chance of solving (1.8) then spectral element techniques need to be 
developed for solving these equations in unbounded domains. This is the subject 
that the present paper addresses for Stokes flow which is the simplest form of (1.8a) 
with W= 0. 

Consider Stokes flow through a 1 :a contraction depicted in Fig. 1. In terms of 
the stream function $(x, y) the governing equations may be recast in the single 
equation 

V”l) = 0, (1.9) 

where V4 is the biharmonic operator. The introduction of the stream function effec- 
tively means that the continuity equation is automatically satisfied. An advantage 
of this formulation over the stream function-vorticity formulation is that we do not 
need to manufacture boundary conditions for the vorticity. We note that the x-axis 
represents an axis of symmetry for the problem. 

We solve Eq. (1.9) subject to the following boundary conditions on $(x, y): 

rc/(x, l)= 1, $ (x, 1) = 0, - co<x<o, 

a<y<l, 

o<x<cil, 

-cn<xx<, 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

bw, Y) = 1, Z(O, y)=O, 

$(A Co = 1, w 5(x, Co=& 

w, 0) = 0, gpx,O)=O, 

W, Y) + WY) as x+ --co, O<y<l, (1.14) 

Ii/(x, Y) -+ G,(Y) as x-00, 06yda, (1.15) 

FIG. 1. Contraction geometry. 
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where 

G,(Y) = :1’(3 - ~~1, G,(Y) = G,(Y/~). 

The region of interest is divided into two semi-infinite rectangular subregions as 
shown in Fig. 1. Other possibilities exist for decomposing the flow region, for exam- 
ple, the use of three elements with a triple point at (0, c(). We feel that there is no 
strong justification in using a larger number of elements, since this would com- 
plicate the implementation considerably. Within each of these subregions we 
represent the solution of Eq. (1.9) in the form of a truncated series involving 
orthogonal polynomials. A discussion about the choice of orthogonal polynomials 
is given later. The unknown coefficients in these expansions are determined by 
satisfying the differential equation ( 1.9) and boundary conditions (l.lO)-( 1.15) at 
selected points in the region (collocation points) and the solutions in the two sub- 
regions are matched by imposing continuity conditions across the interface. This is 
the essence of the spectral element method reported here. The earlier work of 
Patera [21] and Phillips and Davies [22] on spectral element methods uses a 
Galerkin formulation to determine the expansion coefficients. Other global decom- 
position techniques have appeared previously in the solution of boundary value 
problems and in computational fluid dynamics [9, 7, 191. The main differences 
between these techniques lie in the choice of trial functions and in the treatment of 
the continuity conditions at element interfaces. In this work a collocation approach 
is favoured over a variational formulation since although a variational principle 
exists for the biharmonic equation, no such simple principle exists for the 
Navier-Stokes equations [24] or the equations governing non-Newtonian flow. It 
should be pointed out, however, that in situations like these a variational form in 
the sense of a weak, integrated-by-parts form can be used and has the advantage 
of reducing the regularity and continuity requirements of the trial space. 

The Stokes poblem under consideration has a singularity at the re-entrant corner 
(0, CI) which has been the subject of several studies [ 18, 111. Phillips and Davies 
[22] treat the re-entrant corner singularity for the Poisson problem using a post- 
processing technique in conjunction with a two-element discretization of the 4: 1 
contraction geometry. Using this procedure, they obtain accurate solutions in the 
locality of the singularity. Such a technique can also be applied to this problem 
using the asymptotic expansion of the singularity derived by Moffatt [18]. Some 
progress in obtaining an asymptotic form for the non-Newtonian case is being 
made [S]. 

2. THE CHOICE OF TRIAL FUNCTIONS IN SPECTRAL METHODS 

In a spectral method the solution to a differential equation is represented by 
means of a truncated series of smooth, global functions. If the eigenfunctions of 
singular Sturm-Liouville problems are chosen as trial functions then for linear 
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problems with smooth solutions this choice yields expansions which can converge 
asymptotically faster than any finite power of N-l. If the eigenfunctions of a related 
but simpler differential operator to that in the equation to be solved are used then 
exponential convergence is only observed when the problem possesses special 
properties. A comparison of the merits of these choices for solving a nonlinear 
problem is given in Davies, Karageorghis, and Phillips [6]. They show that as for 
linear problems the rapid rate of convergence is maintained when Chebyshev poly- 
nomials are used as trial functions, and that this choice is not sensitive to the level 
of nonlinearity. Joseph [ 121 obtained solutions for the slow flow over a rectangular 
slot by matching biorthogonal eigenfunction expansions in different regions of the 
flow. The expansions are in terms of the eigenfunctions of the biharmonic operator 
and are known as the Papkovich-Fadle eigenfunctions. The work of Davies, 
Karageorghis, and Phillips [6] on one-dimensional nonlinear problems supports 
the use of Chebyshev polynomials over beam functions, which are the one-dimen- 
sional analog of Papkovich-Fadle eigenfunctions. Therefore, since our ultimate 
aim is to solve highly nonlinear differential equations, we only consider the eigen- 
functions of singular Sturm-Liouville problems as trial functions. In particular, we 
investigate the performance of Chebyshev and Laguerre polynomials. 

The spectral collocation method is used to determine the numerical coeflicients 
in the truncated series expansion. In this method the test functions are translated 
Dirac delta functions which means that the differential equation is satistied exactly 
at a selected set of collocation points. Collocation is chosen in preference to 
Galerkin since the algebraic system for the expansion coefficients is then easier to 
formulate, although if numerical quadrature is used to evaluate the integrals which 
appear in a variational form then an essentially collocation scheme results. 

Spectral methods possess approximation properties superior to finite difference 
and finite element methods for problems in which the solution is smooth. The 
advantage of finite element methods is their ability to treat complex geometries. 
The spectral element method introduced by Patera [21] seeks to combine the 
advantages of both the spectral and finite element methods. The contraction 
geometry is therefore divided into two semi-infinite rectangular elements shown in 
Fig. 1 and a spectral approximation to the solution of Eq. (1.9) is sought within 
each constituent rectangle. We approximate the stream function Ii/(x, y) by $i(x, y) 
in region I and $ii(x, y) in region II, where 

$II(X, Y) = G,(Y) + i i LJ,%x) g%4> 
m=O n=O 

(2.1) 

(2.2) 

and f:(x), f:‘(x) (0 <m < A4, 0 6 1< L) and g:(y), g:(y) (0 <n < N) are 
appropriately chosen trial functions in the x- and y-directions, respectively. 
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We consider the following three choices of trial functions in (2.1) and (2.2): 

(a) Chebyshev-Laguerre representation in the original domain; 
(b) Chebyshev-Chebyshev representation in a truncated domain; 
(c) Chebyshev-Chebyshev representation in a mapped domain. 

The choice in (a) uses modified Chebyshev polynomials in the y-direction and 
weighted Laguerre polynomials in the x-direction. The Laguerre polynomials are 
weighted with a decaying exponential function to ensure that 

f;(x)-0 as x+ -co, f!‘(x)-0 as x-+ co, 

for 0 < m d M, 0 6 1~ L. For choice (b) the domain is truncated at a finite distance 
from the interface which effectively means that given entry and exit lengths are 
imposed. A double Chebyshev representation is used in each truncated subregion to 
approximate the stream function. The last approach maps each of the semi-infinite 
subregions onto a finite rectangle using an algebraic mapping in the x-direction. A 
double Chebyshev representation is then sought in the mapped domain. 

3. SPECTRAL COLLOCATION STRATEGY 

In order to have a complete description of the solution we need to determine the 
unknown expansion coefficients appearing in the spectral approximations (2.1) and 
(2.2). There are a total of (M+ L + 2)(N+ 1) coefficients to be calculated. These 
are found by collocating the differential equation, boundary conditions, and inter- 
face continuity conditions. Some of the boundary conditions are automatically 
satisfied by the particular choice of trial functions used, whereas others are to be 
satisfied approximately using collocation. 

In region I we consider the set of collocation points 

s, = {(xf, y;,: O<idM, O<j<N, x&=0, y:,=o, y;= 11, 

and in region II the set of points 

s*= {(Xi’, yj’): O<i6L,OdjQN,xb’=O, yb’=O,yr:=cY}. 

The coefficients amn and b,, are chosen to satisfy (1.9) exactly at a set of collocation 
points T, c S, in region I and T2 c Sz in region II. Substitution of (2.1) and (2.2) 
into (1.9) yields the linear equations 

v4* I = 0, for (x, y)~ T,, (3.1) 

v4*** = 0, for (x, y)~ T,. (3.2) 

In addition we apply Co and C1 continuity across the interface x = 0, 0 < y < 1 at 
the set of collocation points T, c S, and C2 and C3 continuity across the interface 
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x = 0, 06 y < a at the collocation points T4 c SZ These requirements lead to the 
linear equations 

if (0,y)ET3and0<yQa, 
if (O,y)~T~andcr<ySl, (3.3) 

if (0, Y) E T3 and 06yba, 
(3.4) 

if (0,y)ET3anda6yd1, 

3 a Y) = 2 (0, y), if (0, y)ET4andO<y,<a, 

g (0, Y) = !$ (0, y), if (0,y)ET4andO<y<a. 

When all the other boundary conditions are satisfied, the sets T,, T,, T,, and T4 
are chosen in the following way in order to obtain the same number of equations 
as unknowns: 

T,= {(x:, y,!):O<i<M-2,2<j<N-2) (3.7) 

T,={(x:‘,y;‘):3,<i<L,2<j6N-2}, (3.8) 

T,= ((0, y,!):2<j<N-2}, (3.9) 

T,= ((0, y;‘):2<j<N-2). (3.10) 

The omission of the extreme collocation points in S, and S2 means that near the 
boundaries and the subregion interface the approximations eI and tiI1 are influen- 
ced more by the boundary conditions and interface continuity conditions than by 
the differential equation. When some of the boundary conditions remain to be 
satisfied then the sets T, and T, are modified in a way described later. 

The resulting system of linear equations obtained by collocation as described 
above is solved using a Crout factorization technique from the NAG Library. This 
requires 0[ (M + L + 2)3(N + 1 )‘I operations. 

4. SPECTRAL DISCRETIZATION 

4.1. Chebyshev-Laguerre in Original Domain 

In this appoach, modified Chebyshev polynomials are used in the y-direction and 
weighted Laguerre polynomials in the x-direction, For the representation (2.1) in 
region I, for example, we take 

f:(x) = eblXL,( -x), (4.1) 

d(Y) = P,(Y), (4.2) 
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where 

(4.3 1 

are the Laguerre polynomials (see [23]) and 

P,(Y) = T,*(Y) + En T:(Y) + B, T,*(Y) + Yn T?(Y) + 6, T,*(Y) (4.4) 

are the modified Chebyshev polynomials with T,*(y) defined by 

T,*(y)= T,(2y- 1)=cos(ncos--‘(2y- 1)). (4.5) 

The constant bi in (4.1) is a parameter to be chosen. It represents the rate of decay 
of the solution as x + -co. This motivated our choice of b, to be the real part of 
the principal Papkovich-Fadle eigenvalue. The constants LX,, fl,, yn, and 6, are 
constants chosen so that (2.1) satisfies the boundary conditions (1.10) and (1.13) in 
region I. These boundary conditions are automatically satisfied if 

a,=&{-??‘-$(-1 +(-l)“)+i(-l)“n’(n’-l)}, 

b, = 6cr, - A( - 1)’ n2(n2 - 1 ), 

y,, = - c(, + +T( - 1 + ( - 1 )“), 
(4.6) 

6, = - 1 - c(, - 8, - y,. 

Following the recommendations of Orszag [20] we choose the collocation points 
in the y-direction to be the extrema of the Chebyshev polynomial of highest degree 
used in the solution representations. It is known that this choice gives rise to 
optimal approximation properties of smooth functions. We therefore take 

and 

?:‘=fa{l+cosn(l-i)}. 

(4.7) 

(4.8) 

The choice of collocation points in a Laguerre method and the theoretical 
justification of the resulting numerical techniques are contained in a paper by 
Maday et al. [ 141. Mivriplis [ 151 uses Gauss-Radau type Laguerre quadrature to 
accurately evaluate the integrals which appear in a variational form of the one- 
dimensional Helmholtz equation defined on a semi-infinite interval. In the same 
spirit as the choice of collocation points in the y-direction we consider the zeros or 
extrema of the weighted Laguerre polynomial of highest degree as collocation 
points in the x-direction. 



SPECTRAL COLLOCATION METHODS 323 

4.2. Chebyshev-Chebyshev in Truncated Domain 

Here the domain is truncated at a distance h, from the interface in region I and 
at a distance h, from the interface in region II. For the representation (2.1) in 
region I, for example, we take 

f,k) = T!i,‘(x), 

d(Y) = P,(Y), 

where T:(x) is the Chebyshev polynomial defined on the interval C-h,, 0] by 

TV = T,,, 

and P,(y) are the modified Chebyshev polynomials defined in the previous section. 
The collocation points are chosen to be the extrema of the Chebyshev polynomial 
defined on the appropriate interval. 

Since the domain is truncated, fictitious boundary conditions need to be imposed 
along the entry and exit sections. Therefore we apply the boundary conditions: 

$I(-h,> Y)=GI(Y), g(-h,,O)=O, O<y<l, (4.9) 

tinh, Y) = G,,(Y), 2 h, Y) = 0, 06 yQa. (4.10) 

These boundary conditions assume a fully developed velocity profile at the inflow 
x = -h, and at the outflow x = h,. The choice of h, and h, is discussed in the 
numerical results section. 

4.3. Chebyshev-Chebyshev in Mapped Domain 

In this section we extend the work of Grosch and Orszag [lo] to differential 
eqyations defined in two space dimensions. The subregions I and II are each mapped 
into a finite rectangle by means of an algebraic mapping. If we define subregion I 
by the set of points 

R,= {(x, y): -00<x~0,06 y< l}, 

then under the algebraic mapping 

X 
z=- 

x+L,’ L,<O, (4.11) 

R, is mapped onto M,, where 
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Similarly, subregion II is mapped onto M,,, where 

~,,=((z,y):O~z61,O~y~cr} 

under the algebraic mapping 

X 
z=- L,,>O. 

x+L,,’ 
(4.12) 

Under the algebraic mapping (4.1 l), derivatives of the stream function tji(x, y) 
with respect to x are transformed to derivatives with respect to z as 

q=l,..., 4, (4.13) 

and the coefficients Cjy) can be found from the recurrence relation 

(q +j) c!y’+ c!y), = c!y+‘) I J J ’ 

where 

Ci”‘= q! 

A similar procedure is performed in region II for derivatives of $i,. The differential 
equation and interface continuity conditions are thus modified under the mappings 
(4.11) and (4.12). 

In the transformed region M, we seek an approximation to the stream function 
of the form 

$A Y)=WY)+ ; f %nPn(Y) Tm*(z), 
m=O n=4 

and in region Mu, 

The collocation points are again chosen to be the extrema of the Chebyshev 
polynomial of highest degree used in the solution representations. 

5. NUMERICAL RESULTS 

5.1. Chebyshev-Laguerre in Original Domain 

Resuits obtained using this approach were poor. The poor convergence was 
originally thought to be due to the choice of collocation points in the x-direction. 
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Therefore an idealized one-dimensional model problem was considered in order to 
diagnose the source of the difficulty. Consider the fourth-order linear differential 
equation 

(5.1) 

with u and its first three derivatives prescribed at x = 0 and I a given constant. We 
seek an approximation to the solution U(X) of (5.1) in the form of the weighted 
Laguerre representation 

UN(X) = e-pz’ ; a,L,(x). (5.2) 
n=O 

The right-hand side, f(x), is chosen so that the true solution of (5.1) has the form 

U(X)=e-rXcosyx, (5.3) 

where c1 and y are given constants chosen to correspond to the real and imaginary 
parts of the principal Papkovich-Fadle eigenvalue, respectively, i.e., 

a = ;1 N 3.749, 

y N 2.769. 

Numerical experiments were performed varying the value of /I in (5.2). The 
results reveal that convergence is satisfactory only when the exponential mode of 
decay of the approximating function (5.2) is the same as that of the solution (5.3). 
In Table I the relative error in the computed solution is given at selected points for 
different values of /? when N= 14. 

It is evident from the table that as we move further from the origin the relative 
accuracy degrades which is in accordance with remarks of Gottlieb and Orszag [9] 
concerning the accuracy of expansions of Laguerre polynomials. The sensitive 
region in the contraction problem is the area near the interface (origin) where the 
solutions in subregions I and II are matched. A significant observation from 
Table I, however, is that even near the origin the accuracy of the approximation 
degrades for different modes of decay to that of the solution. The study of the 
model problem (5.1) has thus been important in isolating the cause of the 

TABLE I 

Relative Errors at Selected Points for Different Values of b 

x fi = 2.769 fi = 4.0 p = 5.0 p = 6.0 

0.0 0.3849 - 6 0.4094 - 5 0.1348 -4 0.658 1 - 4 
0.2 0.5513-6 0.1985 - 5 0.3139 - 5 0.1167-3 
0.4 0.4258 - 5 0.1026 - 4 0.8875 - 4 0.5684 - 3 
0.6 0.1185-3 0.5684 - 3 0.5366 - 2 0.4474 - 1 
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difficulties associated with the contraction problem. Therefore a more sophisticated 
approach is necessary in order to obtain a more accurate representation of the 
solution. 

5.2. Chebyshev-Cheblishev in Truncated Domain 

In this approach numerical tests are performed with respect to the truncation 
lengths h, and h, in regions I and II, respectively. We consider the 4: 1 (a = a) and 
2: 1 (a = i) contraction geometries. After extensive experimentation the best 
matched solutions were obtained with h, = 2.0 and h, = 0.5 for the 4: 1 contraction 
and with h, = 1.5 and h, = 0.5 for the 2: 1 contraction. Larger values of h, and h, 
correspond to a sparser distribution of collocation points in the neighbourhood of 
the interface. This results in degradation of the smoothness of the continuity 
between the elements and a poor description of the salient corner vortex. Smaller 
values of h, and h, lead to an inaccurate description of the far field flow since 
conditions (4.9) and (4.10) are imposed too close to the interface thereby not 
allowing sufficient entry and exit lengths to obtain a fully developed velocity profile. 

A contour plot of the stream function for the 4: 1 contraction is shown in Fig. 2a. 
This was obtained Chebyshev polynomial expansions of degree 16 in the y-direction 
in both elements and of degrees 16 and 8 in the x-direction in regions I and II, 

FIG. 2. (a) 4: 1 contraction with h, = 2.0, h, =O.S, N = 16, M= 16, L = 8; (b) 2: 1 contraction with 
h,=l.S, h,=OS, N= 17, M=14, L=8. Contour key: 

1 0.0500 9 0.8500 
2 0.1500 10 0.9500 
3 0.2500 11 0.9600 
4 0.3500 12 0.9700 
5 0.4500 13 1.C000 
6 0.5500 14 1.ooo1 
I 0.6500 15 1.0003 
8 0.7500 16 1.0005 
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respectively. The total number of degrees of freedom is therefore 338. A contour 
plot of the stream function for the 2: 1 contraction is given in Fig. 2b. This was 
obtained using a comparable number of degrees of freedom to the 4: 1 contraction. 

The contour plot for the 4: 1 contraction in Fig. 2a was compared with ones 
which had previously appeared in the literature for various degrees of freedom. For 
as few as 338 degrees of freedom we obtain results which are in qualitative agree- 
ment with those of Mendelson et al. [ 171 who use a finite element method with as 
many as 1326 degrees of freedom (92 elements). For the 2 : 1 contraction (see 
Fig. 2b) excellent agreement is observed with the results of Dennis and Smith [8] 
and Holstein and Paddon [ 111. 

5.3. Chehyshev-Chebyshev in Mapped Domain 

The results obtained using the algebraic mapping oi the two semi-infinite 
elements onto finite rectangles are again satisfactory. For this case numerical tests 
are performed with respect to the mapping factors Li and Ln in regions I and II, 
respectively. Large values of the mapping factors correspond to a sparse distribu- 
tion of collocation points near the interface whereas small values correspond to a 
dense distribution there at the expense of a detailed description of the flow in the 
far field. The values of L, and L,, which give the smoothest solution both across the 
interface and in the entry and exit sections are - 2.0 and 0.5 for the 4 : 1 contraction 
and - 1.8, and 0.6 for the 3: 1 contraction. 

In order to verify the convergence of the approximation we compare the 
solutions obtained with different numbers of degrees of freedom by increasing the 
degree of the approximating polynomial within each of the two elements. The 
transition from a low order approximating polynomial to a higher order one can 
be seen in Figs. 3a-d. The solution converges rapidly with the addition of only a 
small number of degrees of freedom at each stage. A contour plot of the stream 
function for the 3: 1 contraction is given in Fig. 4 to validate the robustness of the 
present method. 

The CPU times, in seconds, required to produce the results shown in Fig. 3 are 
tabulated in Table II for the various numbers of degrees of freedom. The computa- 
tional effort is dominated by the need to invert large matrices which requires 0(K3) 
operations where K denotes the size of the matrix, i.e., the total number of degrees 

TABLE II 

Variation of CPU Time with Number of 
Degrees of Freedom 

Degrees CPU time 
N M L of freedom (s) 

16 10 6 234 28.0 
16 12 7 273 40.5 
16 13 8 299 50.0 
16 16 8 338 69.0 
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FIG. 3. 4: 1 contraction with L, = -2.0, L,, =OS: (a) N= 16, M= 10, L=6 (234degrees of 
freedom); (b) N = 16, M = 12, L = 7 (273 degrees of freedom); (c) N = 16, M = 13, L = 8 (299 degrees of 
freedom); (d) N = 16, A4 = 16, L = 8 (338 degrees of freedom). (see contour key for Fig. 2.) 

of freedom. This is reflected in the way the CPU time increases with K. For a given 
number of degrees of freedom this means that the spectral collocation method 
considered here is more expensive than conventional finite difference methods. 
However, far fewer degrees of freedom are required in a spectral representation 
than a finite difference one to attain comparable accuracy (see, e.g., [8]). The 
computations were performed on a CDC 7600 computer located at the University 
of Manchester. 

Further increasing the number of degrees of freedom beyond the number used to 
produce Fig. 3d had no visible effect on the stream function contours. The 
appearance of miniature eddies at the corner (0, 1) in Figs. 2a and 4 is possibly a 
result of the presence of weak singularities there (see [18]). 
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FIG. 4. 3: 1 contraction with L, = -1.8, L,, = 0.6, N= 16, M= 16, L = 8. (See contour key for 
Fig. 2.) 

6. CONCLUSIONS 

The present study investigates Stokes flow in contraction geometries and 
unbounded domains. A spectral element method is presented which solves the 
governing equation of motion for the stream function as a set of coupled problems 
over semi-infinite rectangular subregions or elements. The solutions in the two 
elements are matched by imposing C3 interface continuity conditions in the 
collocation sense. Several choices or trial functions are considered. 

An attempt to approximate the solution by a weighted Laguerre-Chebyshev 
expansion failed since it did not represent the exponential rate of decay of the 
solution at entry and exit. A conventional domain truncation technique produced 
satisfactory results with far fewer degrees of freedom than are required for finite 
difference and finite element solutions. However, these truncation methods are 
really only adequate for treating the flow of fluids which possess no memory, i.e., 
Newtonian fluids. This is because when elastic effects dominate, the entry and exit 
lengths need to be extended considerably in order to obtain a fully developed 
velocity profile. To overcome this we propose the use of algebraic mapping 
techniques which involves mapping the tivo semi-infinite regions of the problem 
onto two finite rectangles. This approach proved to be extremely promising. 

The underlying structure of the linear system of algebraic equations has not yet 
been fully exploited. If this were done then considerable reductions in the amount 
of computer storage required would be achieved. Alternatives to the direct methods 
of solution used in the present paper taking advantage of the block tridiagonal 
structure of the spectral element matrix are currently under investigation. 



330 KARAGEORGHIS AND PHILLIPS 

The techniques developed in Karageorghis, Phillips, and Davies [ 131 and the 
present paper now provide the framework within which the non-Newtonian 
problem can be tackled. 
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